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FRACTURE WAVE IN A CHAIN STRUCTURE 

L. I. Slepyan and L. V. Troyankina UDC 534.1:539.375 

Various formulations of the problem of fracture wave propagation in an elastic brittle 

body are known (see [1-4] including references). Each of the proposed variants of the theory 
of this process is based on some hypothesis, for example: concerning the fracture wave veloc- 
ity [2-5], the intensity of the elastic precursor [6], or the fracture energy [7, 8]. The 
introduction of an additional relation is necessary in order to close the system of equations 

of dynamics of the elasto-brittle continuum. However, such a relation cannot be justified 
without having recourse to data on the structure of the fracture front. This distinguishes 

the fracture wave from "ordinary" nonlinear waves whose macroparameters are determined inde- 
pendently of the structure of the front [8]. 

This fundamental difficulty can be overcome if we consider a structured medium, as is 
done below. As the simplest model of a structured medium we will take a linear chain in which 

each of the component unit masses interacts with the two adjacent masses through linear-elastic 
inertialess bonds (the distance between masses and the stiffnesses of the bonds are also taken 
as units of measurement, the velocity of the long waves in the undamaged chain being taken as 
the unit of velocity). At a certain bond stress o = o, << 1 the bond partially fails: The 
bond stiffness takes a (positive) value e2 < i. As distinct from the formulation of the same 
problem within a continuum framework [5-8], here there is no need to introduce any additional 
hypotheses. 

Let us consider the stationary problem, in solving which we will use the same methods 
as in investigating the dynamics of a crack in a grid [9]. In the problem in question, taking 
into account the structure leads, essentially, to the same result as in [9]: high-frequency 
waves carrying part of the energy away from the fracture front (effect analogous to a tempera- 

ture rise [7]). In the dynamics of a single crack, the structure of the medium determines the 
macroscopic fracture criterion and, consequently, affects the macroparameters of the velocity 

and stress fields. Thus, in the propagation of a fracture wave the microstructure also deter- 
mines the macroparameters of the process (longwave approximation) -- the ratios ~i/o,, ~2/o,, 

where o~ = const is the average stress in the elastic precursor, and 02 = const is the average 
stress behind the fracture front. The earlier assumptions [8] to the effect that oi < ~, and 

fracture can occur even when 02 < o, (oi,2 > 0) are confirmed~ The latter conclusion might 
appear strange if considered within the context of an unstructured continuum. Here, however, 
it is obvious: The total stresses behind the fracture front (with the high-frequency waves 
taken into account) exceed the average value. 

i. Formulation of the Problem and Basic Relations 

We assume that the velocities u and accelerations a are functions of a single variable 
T = x -- vt, where x = 0, • ... are the Lagrangian coordinates of the masses, v = const > 0 
is the velocity of the fracture front, and t is time. We note that the displacements, which 
owing to the presence of the elastic precursor also depend on x, cannot be similarly defined. 
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In the case of undamaged bonds for an arbitrary mass we have the equation of motion 

a(T) = Q(T) -- Q(T - I) + R(T), where Q(T) is the increase in the distance between the given 

mass and the adjacent mass to the right (coordinate x + i); R(T) is the external force acting 

on the given mass. Then, ~2Q(r)/~t2 = v2Q"(T) = a(r + i) -- a(~), where a prime denotes the 
derivative with respect to the argument. Hence we obtain the following equation "in the 
stresses" (for an undamaged grid the stress o(r) = Q(T)): 

v~Q"(~) ~- 2Q(~) - Q(~ - i) - Q(~ ~- I) = p(~) = R(T + i) -- R(~). (i.I) 

Let (partial) fracture of the bond occur at T = 0 (t = x/v), after which (at �9 < 0) o = 

a2Q. In order to take this into account, it is sufficient for T < 0 to compensate in (i.i) 
the stresses (i --2)Q by means of the external forces, setting 

P(T) = Po(~) " ( t  - -  a2)[2Q_(T) - -  Q _ ( ~ -  t) - Q_(~ ~- t)1,~ 

Q+('O = Q('OH(-+-'@, B(~) = Bo(~) ,'-- (1 - -  ~ )  • [Q_(~ - i)  - Q_(~)], 

where H is the Heaviside unit function; Po(T) = Ro(~ + i) --Ro(~) is the external force 
stretching the bond in the problem with allowance for fracture (we will first consider the 
inhomogeneous problem and then turn to the homogeneous one). We assume that the external 

forces Po(r) are bounded. Then Q(~) is continuous and the problem reduces to the equation 

2 u Q+ (~) + 2Q+ (~) - Q+ (~ - I) - Q+ (~ + I) + u"-Q"_ (~) + ~2 (2Q_ (~) - Q_ (~ - ~) - Q_ (~ + ~)) -- P0 (~) (i. 2) 

with the condition 

Q+(o) = Q_(O) = ~ ,  ~ +  o) = ~ , ,  ~ ( - o )  = ~ , ) .  (1.3) 

In these relations it is possible to assume that the macrostress ~ behind the fracture 

front is given and determine o~, v and the oscillating waves behind the front and in the pre- 
cursor. However, it is more convenient to assume that the velocity of the front v is given 
and determine the other corresponding quantities. 

If the fracture of the bond occurs not in accordance with an external signal which could 
be received, say, at r = 0, but when the stress reaches a critical level o = o, ("natural 
fracture"), then the stationary solution sought must satisfy one further condition: The total 

stress at T > 0 (with allowance for the mean and oscillating waves) must be less than o,. We 
will assume that ~, > 0 irrespective of whether the bond fractures in tension or compression. 

2. General Solution 

The solution of the stationary problem is nonunique. We will define it further by as- 

suming that it is the limit as t § ~ (for an arbitrary finite neighborhood of T = 0) of the 
solution of the same, but nonstationary problem with zero initial conditions. The resulting 
solution selection rule was given in [i0, ii]. Using this rule, after taking Fourier trans- 

forms 

QF (q) = ~ Q (~) e~q~d~ 

f rom Eq.  ( 1 . 2 )  we o b t a i n  

h (~q~ + O, q) Q~ + ~ h  ( i q ~  -~ + O, q) Q~ = p~, h (iqv + 0, q) = 2 (t - -  cos q) + (0 + iq~)~. 

We will use the representation for 
was denoted as h 2 that for h+ as u 

h taken from [9, i0] 
at 0 <v< i: 

(2.1) 

(where the expression for h (2.1) 

h(iqv + O, q) = t~+(q, v)h_(q,, v), 

h (q, v) = (0 T iq) ]/ri - -  v ~" ai)+ (iq, v) n L=~ (v), ( 2 . 2 )  
k 

[ (o ~ *q) / s, 
L ~ ( v ) = t + [  I~ , t ~ = [ 3 ~ ( v ) ,  I ~ ( v  a - ~ ) = ? ~ ( v ) .  

Here the product includes the number of factors (greater by one for h than fqr h4_], . _ i - -  -ff 

which depends on v; q = B + are the positive roots of the equation h = 0, and sin B E ~ V2Bk 
(the roots correspond to ~oscillating waves whose group velocity Vg is not less than the phase 
velocity v), sin B k ~ V2~k(vg ~ v); in the case of a double root (there are no roots of 
greater multiplicity) one of them is BE, the other Bk; %+(iq, v) are complex-conjugate func- 
tions of q that do not have zeros or poles at Im q > --s < 0(~+) or at Im q < s(~_). 
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We set 

Using the factorization (2.2), we represent (2.1) in the form (0 < v < ~) 

h+ (q, v) h (q, vo~ -1) Q~_ pF 
- = o . . (2.3) 

(q, v~-~) Q$- + a~ h_ (q, v) h_(q, v)h+ I, h+ 

-1~ 2A~ 
Po ~ = h_ (q, v) h+ (q, vo~ , q - ~ ,  A = const (~ > 0). ( 2 . 4 )  

From (2.1) and (2.2) it follows that in this case Po F § 0 (and hence Po § 0) as c § 0. 
Going over in the limit (s = +0) to the homogeneous problem, we obtain 

h+ (q, v) h- (q, va-x) [ t 1 , 
h+ (q, v~ -1) Q$" + ~ QF = A~) (q) ~ + (2.5) 

h_(q,~) ~ ~ 7 '  

where ~(g) is the Dirac function. In the class of bounded functions Q_+(T) the solution of Eq. 
(2.5) is unique 

" A h +  (q,  v a  - 1 )  A h _  (q,  v) 

Q $ ( q ) =  O-~q  h+(q,v) ' QV_(q)= a"(O+~q) h_(q, va-1) " ( 2 . 6 )  

Remark. There also exist other sequences of external forces, distinct from (2.4), that 
lead to certain homogeneous solutions: 

p# : ~_ (q, ~) ~+ (q, ~-~) K, 
4Ae 2As K : 2A~ (8 ~ 0). 

K -- (q2 + e2)~, K : (q • ?~)~ + a~, (q + ~)~ + s~ , 

However, the first of these leads to a solution that does not satisfy the condition of 
boundedness of Q_+(T), and the subsequent ones correspond to fracture under the action of the 
high-frequency waves (see [i0]) when ~2 = o~ = 0; this process is not considered here. 

3. Longwave Approximation and Oscillating Waves 

In view of the continuity of Q(T) the elongation at fracture can be found, on the basis 
of (2.2) and (2.6), in the form 

A -,-,- 13[~+ 
q VQ$- (gq) QF- ( -  lq) Q(O) = ( ~ ,  = lira : m ,  • +=,  (3 .1)  

q-~+oo ~h Yh 

whence  we can  d e t e r m i n e  t h e  c o n s t a n t  A. The l o n g w a v e  a p p r o x i m a t i o n  (q § O) h a s  t h e  f o r m  

Hence 

O. i - -  v ~ ' 0", t - -  v2c~ -2" 

The undamped o s c i l l a t i n g  waves  p r o p a g a t i n g  a h e a d  o f  ( b e h i n d )  
termined by the poles of expressions (2.6) for Q+(Q_) on the real axis q at q # 0, 
the zeros of the functions h+(q, v)(h_(q, v/a)); q = +8~(q = • We find 

Q+ (~) = R~ Ah+ (~+, ~-~) o~p (--,~+~) = 

f ~ + ( ~ + )  ~ ) 

M + ( q ) = M •  1 - -  ~ N #  (ql = N+ (q) l - - k ~ ]  / ' 
\vh ] I 

q 2 

The amplitude of the stress wave 

(3.3) 

the fracture front are de- 

i.e., by 
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In accordance with (2.2) at q # 0 

Ih(~qv, q) [ ~.1~ 
(~)+ (iq, v) l =  ( i - - v  2) q2lM+ (q)M_ (q)]) ' 

I h (~qva -1, q) I )a/~ 

In the limit as q + $~ 

Hence 

= ,; 

k k P h ]  - - \  h ]  k 

l 2 ( i  __ COS ~h-k) __ ( V ~ - - 1 ) 2  1/2 

['I/2(T> 0). (3.4) 
+ �9 + + 2  + + + 

Similarly we find 

a(~,x h (iy~v, y ; )  N+ ( ? ; ) M  ( y ; )  
]ff-h [ = y ;  [ y ;  sin YT-- ( ? ;v~ - l )  2] N ;  ( ? ; ) M +  ( y ; ) ,  �9 ( 3 . 5 )  

The v e l o c i t i e s  o f  t he  masses  a r e  d e t e r m i n e d  as  f o l l o w s .  We have 

a(~) = Ou/Ot = --vu'(T), a~(q) = iqvuV(q). 

Taking into account the fact that a(T) = O(T) -- O(~ -- I)(~+(T) = Q+(T), O_(T) = a2Q_(1)) and 
aF(q) = (i -- eiq)oF(q), we obtain 

uy = __20F(qv)-i exp (iq/2) sin (q/2) + 2~B5(q) ~ - - o F v  -1 + 2nB6(q)(q -+ 0), B = const. ( 3 . 6 )  

The average value of the velocity (longwave approximation) is determined as the inverse 
transform of the asymptotic form in (3.6): 

U 1 = U+ = --01/2--1 -]- B ,  u 2 = u _  = - - 0 2 / )  - 1  - ~  B .  

The constant B is determined from the obvious condition u~ = ~ ; B = (v -~ -- l)o~. Thus, 

Ul = --($i, U2 = ( z2-1 -- I){Yl -- 02/)--I" (3.7) 

The velocities of the masses in the undamped oscillating waves are obtained as the contribu- 
tions of the corresponding poles of transform (3.6), i.e., by replacing the parameter q (ex- 

plicitly written out in (3.6)) by $~(yk): 
1 -- 

[u+h]= 2 ~r+~sin  (~>0) ,  [u -k ]=  0_ sin-~- 

4. Energy  F lux  

The stationary solution selection rule used above leads to undamped oscillating waves 
whose group velocity is greater (less) than the phase velocity being present only ahead of 
(behind) the fracture front. Accordingly, the energy flux corresponding to these waves origi- 
nates in the fracture front. Moreover, the energy contained in the constant-intensity elas- 
tic precursor (longwave approximation) flows away from the fracture front. The only possible 
source of energy for these waves, and of the fracture energy proper -- the energy expended on 
the sudden loss of bond stiffness--is the wave of constant intensity behind the fracture front 
whose energy is created by the work done by the stresses o2. Thus, the following energy flux 

relation must be satisfied: 

A 1 ( i -  v) + A~v + ~ A+k (Vgk-  v) + ~aA-~, ( v -  Vgj,) + Tov=--cr2u~, ( 4 . 1 )  
h k 

where  A~ (u~ + o21)/2 = o~ i s  t h e  e n e r g y  d e n s i t y  in  t h e  c o n s t a n t - i n t e n s i t y  e l a s t i c  p r e c u r -  
s o r ;  A2 = (u~ + o ~ a - 2 ) / 2  i s  t h e  e n e r g y  d e n s i t y  i n  t h e  a v e r a g e  wave b e h i n d  t h e  f r a c t u r e  f r o n t ;  
A+k(A_ k) is the average energy density of the oscillating wave (v is its phase velocity, Vg k 

the group velocity, and-vBt(--vy k) the frequency): 

A+k= T [u+kl 2+lg+~l~),  A _ ~ =  ~ [u_~ + ~ 7, 
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To (i -- e2~o=i = ~ ,~2 is the fracture energy. 

Expressions for the amplitudes of the stresses and velocities concerned are given in 

(3.3)-(3.5), (3.7), and (3.8). Relation (4.1) can be (and was) used for checking the results 
of computations based on the above equations. Let us determine the ratio of the fracture 

energy To to the total energy T dissipated at macrolevel in unit displacement of the fracture 
front. From (4.1), (3.7), and (3.3) there follows 

Thus 

T =  T o -I- Z( t - -Vg~V-1)  A - h - - Z ( 1 - - U g ~ V - i ) A + k  --= 
h h 

= - -  g 2 u 2  - -  A i (1  - -  v) - -  Aov = ___1 ( t  - -  v 2) ~ i  ( e 2  - -  ~ i )  ---- 
- 2v2 

i ( i  - -  g~)  ~2,u2 = To• 2 = TJ~ -~ .  = - ~  

k = To/T = • (4.2) 

The function k(~, v) completely determines the effect of the structure of the medium on 
the macroparameters of the fracture wave. Introducing this function is sufficient to close 
the equations of dynamics of an elasto-brittle unstructured continuum. We note that the ex- 
pression for k(v) applicable to a medium with a more general structure coincides with that 
given in [12]. 

5. Some Conclusions 

Let vo ~ v < i, vo = 21sin(qo/2) I/qo = 0.2106 (qo is the minimum positive root of the 
equation qo =2 tan(qo/2) = 8.987). Then the equations h(iqvl + 0, q) = 0 (v~ = v, vi = v/~ E 
w) have in each case one positive root q = B~ E 28(Vl = v) and q = Y7 E 2y(vl = w), 0 < 8, 
y < ~. The oscillating waves are propagated only behind the fracture front (T < 0). Turn- 
ing to (3.1) and (3.3) and taking into account the equations satisfied by $ and y, we can 
write 

~__~ = ~ V 1 - ~ - ~  = ] / / ( v )  F ~ (~), ! (~) = ~ i ~ - b  - x -~ .  
~* ? ~ 1 - -  v ~ 

On this interval f(x) (x = 8, y) increases monotonically: 3f/3x > 0, and y < B at ~ < i; there- 
fore oi/o* < l(a < i). 

Now, let ~ + O, vo < v/~ < i. Then the number of positive roots of the equation h(iqv + 

O, q) = O, equal to m for 8~ and m + 1 for Sk, increases without bound: m ~ I/~v -* ~, and the 
equation h(iqva -~ + 0, q) = 0 has only one positive root y-. In this case, with sufficient 
asymptotic accuracy it is possible to represent Bk ~ 2~n • arcsin(wnv), where n = i, 2, ..., + 
m for 8 k and n = i, 2, ..., m + 1 for 8k, and find (see [ii]) 

m + 
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In turn, for y~ we have the asymptotic representation Y7 ~ 2f~(l -- v/a)(v § ~), y~ in- 
creasing monotonically with decrease in v and reaching at the lower limit of the interval in 
question the value Y7 = 5.140. Substituting these data in (3.3), we find (a § O) 

~ t ~2 ~ t ( v - + ~ ) ,  
~, . 1 / ~  ,~ 0.2887, o--~ N ~ 4 ]/~ (t -- v~ -1) 

- - , ~ 0 . 9 0 2 3 ,  - - ~ 0 . 9 4 4 2  = 0 . 2 1 0 6  

(the factor ~/v in the expression for o2/o, tends to unity, but has been retained in order to 
extend the range of v/a well described by this expression). 

Thus, not only oi < o,, but also under certain conditions o2 < o,. 

In Fig. 1 we have plotted k as a function of v/a for a = 0.9, 0.8, 0.4, 0.2, 0.i (curves 
1-5 respectively), and in Figs. 2and 3 graphs of o~,2(v/a) for the same values of a. 

Clearly, at sufficiently small values of o2 (but such that fracture can still occur, 

O2min(a) < o2(v/a) ~ 02(0)) the velocity v is nonuniquely determined with respect to the 
value of o2. 

It appears that the lower value of the velocity corresponds to instability of the branch 
o2(v/a). In this case, at any value of a < 1 the velocity v has a nonzero lower bound (the 
existence of a lower bound for v was noted in [8]). For example, for a = 0.8 and oa = 0.95 

the minimum v = Vmi n = 0.38 (the velocity of the long waves in the undamaged grid has been 
taken as the unit of velocity). 

In the event of natural fracture, apart from those found, at 02/o, < 1 there exists an- 
other static solution v = 0. The functions k(v) are characterized by the same type of inde- 
terminacy (the k(v/~) graphs are shown in Fig. i). 

It is also clear (see Fig. 2) that ol/o, < i. The upper bound for the stresses ahead of 
the fracture front Z(v/~) is equal to the arithmetic sum of oi and the amplitudes of the os- 
cillating waves with group velocities greater than v. In Fig. 4 we have plotted graphs of 
E/o, for the same values of ~. Stationary solutions for the problem of natural fracture exist 

when this bound E < o,. 
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STATISTICAL ESTIMATE OF BRITTLE STRENGTH WITH ALLOWANCE FOR CRACK RESISTANCE 

A. I. Korshunov and S. A. Novikov UDC 620.171.3 

The classical statistical approach to the question of the probability of brittle frac- 
ture presupposes the presence in the investigated material of a system of defects, which 
also determines the strength of a specimen made of the material concerned. It is assumed 
that for each specific defect there is a corresponding local strength. The strength of the 
specimen as a whole (at least under static loading) is determined by the strength of the most 
dangerous defect, which in a given specimen has the minimum strength. The scale effect (SE) 
consists in the fact that in a specimen of greater volume there is a greater probability of 
encountering a more dangerous defect. Such an explanation of the SE was first given in Ill, 
and a mathematical treatment using several different approaches was presented first in [2] and 
later in [3]. 

In [2] Weibull introduced the concept of the probability of fracture So of unit volume 
at the stress o, and on the basis of a solution of the statistical problem obtained the frac- 
ture probability S at stress ~ for a specimen of volume V: 

S ~ t - -  e -vn(~), 

where the function n(o) is taken in the form 

n(~) = (~Iao) "~ 

(Oo and m are experimentally selected material constants). 

( l )  

( 2 )  

Then, in [2] from Eq. (i), using 
(2), the following relation between the breaking stress and the volume of the test specimen 
was obtained: 

~p ~ ~ f m  V~/m,  

where I m is a constant for a given state of stress. In more general form 

ap = AV-1/m, (3 )  

w h e r e  A = OoI  m. 

Another approach to the solution of the problem is proposed in [3], namely to find the 
probability W(F)dF that in a specimen of volume V the most dangerous defect is that with the 
parameter F "--F + AF 

i ]~v-1 W (F) dF --~ n V p  (F) t~ (F) dF dF, 
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